

COMP9517: Computer Vision

Motion Estimation

Copyright (C) UNSW COMP9517 24T2W9 Motion Estimation 1

Introduction

• Adding the time dimension to the image formation

Introduction

• A changing scene may be observed and analysed via a sequence of images

Introduction

- Changes in an image sequence provide features for
	- Detecting objects that are moving
	- Computing trajectories of moving objects
	- Performing motion analysis of moving objects
	- Recognising objects based on their behaviours
	- Computing the motion of the viewer in the world
	- Detecting and recognising activities in a scene

Applications

- **Motion-based recognition**
	- Human identification based on gait, automatic object detection
- **Automated surveillance**
	- Monitoring a scene to detect suspicious activities or unlikely events
- **Video indexing**
	- Automatic annotation and retrieval of videos in multimedia databases

• **Human-computer interaction**

- Gesture recognition, eye gaze tracking for data input to computers
- **Traffic monitoring**
	- Real-time gathering of traffic statistics to direct traffic flow
- **Vehicle navigation**
	- Video-based path planning and obstacle avoidance capabilities

Scenarios

• **Still camera**

Constant background with

- Single moving object
- Multiple moving objects

• **Moving camera**

Relatively constant scene with

- Coherent scene motion
- Single moving object
- Multiple moving objects

Topics

• **Change detection**

Using *image subtraction* to detect changes in scenes

• **Sparse motion estimation**

Using *template matching* to estimate local displacements

• **Dense motion estimation**

Using *optical flow* to compute a dense motion vector field

Change Detection

Change Detection

- Detecting an object moving across a constant background
- The forward and rear edges of the object advance only a few pixels per frame

• By subtracting the image I_t from the previous image I_{t-1} the edges should be evident as the only pixels significantly different from zero

Step: Derive a background image from a set of video frames at the beginning of the video sequence

Performance **E**valuation of **T**racking and **S**urveillance (PETS) 2009 **Benchmark**

Step: Subtract the background image from each subsequent frame to create a difference image

Step: Threshold and enhance the difference image to fuse neighbouring regions and remove noise

Detected bounding boxes overlaid on input frame

Change Detection

Image subtraction algorithm

- Input: images I_t and $I_{t-\Delta t}$ (or a model image)
- Input: an intensity threshold $τ$
- Output: a binary image I_{out}
- Output: a set of bounding boxes B
- 1. For all pixels [r, c] in the input images, set I_{out}[r, c] = 1 if (|I_t[r, c] -I_{t-Δt}[r, c]|>τ) set $I_{out}[r, c] = 0$ otherwise
- 2. Perform connected components extraction on I_{out}
- 3. Remove small regions in I_{out} assuming they are noise
- 4. Perform a closing of I_{out} using a small disk to fuse neighbouring regions
- 5. Compute the bounding boxes of all remaining regions of changed pixels
- 6. Return $I_{out}[r, c]$ and the bounding boxes B of regions of changed pixels

Sparse Motion Estimation

Motion Vector

- A motion field is a 2D array of 2D vectors representing the motion of 3D scene points
- A motion vector in the image represents the displacement of the image of a moving 3D point
	- Tail at time t and head at time t+Δt
	- Instantaneous velocity estimate at time t

Copyright (C) UNSW COMP9517 24T2W9 Motion Estimation 16

Sparse Motion Estimation

- A sparse motion field can be computed by identifying pairs of points that correspond in two images taken at times t and t+Δt
- Assumption: intensities of interesting points and their neighbours remain nearly constant over time
- Two steps:
	- Detect interesting points at t
	- Search corresponding points at t+Δt

Sparse Motion Estimation

- Detect interesting points
	- Image filters
		- Canny edge detector
		- Hessian ridge detector
		- Harris corner detector
		- Scale invariant feature transform (SIFT)
		- Fully convolutional neural network (FCN)
	- Interest operator
		- Computes intensity variance in the vertical, horizontal and diagonal directions
		- Interest point if the minimum of these four variances exceeds a threshold

Detect Interesting Points

```
Procedure detect interesting points(I,V,w,t) {
for (r = 0 to MaxRow -1)
    for (c = 0 to MaxCol -1)
        if (I[r,c] is a border pixel) break;
        else if (interest operator(I, r, c, w) >= t)
            add (r,c) to set V;
```
}

Procedure interest_operator (I,r,c,w) {

v1 = variance of intensity of horizontal pixels I[r,c-w]…I[r,c+w];

 $v2$ = variance of intensity of vertical pixels $[$ r-w,c]... $[$ r+w,c];

 $v3$ = variance of intensity of diagonal pixels $[$ r-w,c-w]... $[$ r+w,c+w];

 $v4$ = variance of intensity of diagonal pixels $[$ r-w,c+w $]$... $[$ r+w,c-w $]$; return min(v1, v2, v3, v4);

}

Sparse Motion Estimation

- Search corresponding points
	- Given an interesting point P_i from I_t, take its neighbourhood in I_t and find the best matching neighbourhood in $I_{t+\Lambda t}$ under the assumption that the amount of movement is limited

This approach is also known as template matching

Similarity Measures

• Cross-correlation (to be maximised)

$$
CC(\Delta x, \Delta y) = \sum_{(x, y) \in T} I_t(x, y) \cdot I_{t + \Delta t}(x + \Delta x, y + \Delta y)
$$

• Sum of absolute differences (to be minimised)

$$
\text{SAD}(\Delta x, \Delta y) = \sum_{(x, y) \in T} \left| I_t(x, y) - I_{t + \Delta t}(x + \Delta x, y + \Delta y) \right|
$$

• Sum of squared differences (to be minimised)

$$
SSD(\Delta x, \Delta y) = \sum_{(x, y) \in T} \left[I_t(x, y) - I_{t + \Delta t}(x + \Delta x, y + \Delta y) \right]^2
$$

Similarity Measures

• Mutual information (to be maximised)

$$
MI(A, B) = \sum_{a} \sum_{b} P_{AB}(a, b) \log_2 \left(\frac{P_{AB}(a, b)}{P_A(a)P_B(b)} \right)
$$

Subimages to compare:

$$
A \subset I_t \qquad B \subset I_{t+\Delta t} \qquad P_B(b)
$$

Intensity probabilities:

 $P_{A}(a)$ $P_{B}(b)$

Joint intensity probability:

 $P_{AB}(a,b)$

Dense Motion Estimation

Dense Motion Estimation

- Assumptions:
	- The object reflectivity and illumination do not change during the considered time interval
	- The distance of the object to the camera and the light sources does not vary significantly over this interval
	- $-$ Each small neighbourhood $N_t(x,y)$ at time t is observed in some shifted position N_{t+Δt}(x+Δx,y+Δy) at time t+Δt
- These assumptions may not hold tight in reality, but provide useful computation and approximation

Spatiotemporal Gradient

• Taylor series expansion of a function

$$
f(x + \Delta x) = f(x) + \frac{\partial f}{\partial x} \Delta x + \text{h.o.t} \implies
$$

$$
f(x + \Delta x) \approx f(x) + \frac{\partial f}{\partial x} \Delta x
$$

• Multivariable Taylor series approximation

$$
f(x + \Delta x, y + \Delta y, t + \Delta t) \approx f(x, y, t) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial t} \Delta t \tag{1}
$$

Optical Flow Equation

Assuming neighbourhood $N_t(x, y)$ at time t moves over vector V=(Δx, Δy) to an identical neighbourhood N_{t+Δt}(x+Δx, y+Δy) at time t+Δt leads to the optical flow equation:

$$
f(x + \Delta x, y + \Delta y, t + \Delta t) = f(x, y, t)
$$
 (2)

Combining (1) and (2) yields the following constraint:

$$
\frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial t} \Delta t = 0 \implies \n\frac{\partial f}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial f}{\partial y} \frac{\Delta y}{\Delta t} + \frac{\partial f}{\partial t} \frac{\Delta t}{\Delta t} = 0 \implies \n\frac{\partial f}{\partial x} v_x + \frac{\partial f}{\partial y} v_y + \frac{\partial f}{\partial t} = 0 \implies \n\nabla f \cdot v = -f_t
$$

where $v = (v_x^*, v_y^*)$ is the velocity or *optical flow* of $f(x, y, t)$ and $\nabla f = (f_x, f_y) = (\partial f / \partial x, \partial f / \partial y)$ is the gradient

- The optical flow equation provides a constraint that can be applied at every pixel position
- However, the equation does not have unique solution and thus further constraints are required

For example, by using the optical flow equation for a group of adjacent pixels and assuming that all of them have the same velocity, the optical flow computation task amounts to solving a linear system of equations using the least-squares method

Many other solutions have been proposed (see references)

• Example: Lucas-Kanade approach to optical flow

Assume the optical flow equation holds for all pixels p_i in a certain neighbourhood and use the following notation:

$$
v = (v_x, v_y) \qquad f_x = \frac{\partial f}{\partial x} \qquad f_y = \frac{\partial f}{\partial y} \qquad f_t = \frac{\partial f}{\partial t}
$$

Then we have the following set of equations:

$$
f_x(p_1)v_x + f_y(p_1)v_y = -f_t(p_1)
$$

\n
$$
f_x(p_2)v_x + f_y(p_2)v_y = -f_t(p_2)
$$

\n
$$
\vdots \qquad \vdots \qquad \vdots
$$

\n
$$
f_x(p_y)v_x + f_y(p_y)v_y = -f_t(p_y)
$$

• Example: Lucas-Kanade approach to optical flow The set of equations can be rewritten as $Av = b$ where

$$
A = \begin{bmatrix} f_x(p_1) & f_y(p_1) \\ f_x(p_2) & f_y(p_2) \\ \vdots & \vdots \\ f_x(p_N) & f_y(p_N) \end{bmatrix} \qquad v = \begin{bmatrix} v_x \\ v_y \end{bmatrix} \qquad b = \begin{bmatrix} -f_t(p_1) \\ -f_t(p_2) \\ \vdots \\ -f_t(p_N) \end{bmatrix}
$$

This can be solved using the least-squares approach:

$$
A^T A v = A^T b \qquad \Rightarrow \qquad v = \left(A^T A\right)^{-1} A^T b
$$

Optical Flow Example

<https://www.youtube.com/watch?v=GIUDAZLfYhY>

References and Acknowledgements

- Chapter 8 of Szeliski 2010
- Chapter 9 of Shapiro and Stockman 2001
- Some images drawn from the above references

Example exam question

Which one of the following statements about motion analysis is incorrect?

- A. Detection of moving objects by subtraction of successive images in a video works best if the background is constant.
- B. Sparse motion estimation in a video can be done by template matching and minimising the mutual information measure.
- C. Dense motion estimation using optical flow assumes that each small neighbourhood remains constant over time.
- D. Optical flow provides an equation for each pixel but requires further constraints to solve the equation uniquely.