AMPL model to optimize the analysis of an algorithm for Maximum Independent Set in Lecture 03-branch.

param maxd integer = 5;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0;  # weight for vertices according to their degrees
var g {DEGREES} >= 0;  # weight for degree reductions from deg i
var h {DEGREES} >= 0;  # weight for degree reductions from deg \le i
var Wmax;              # maximum weight of W[d]

minimize Obj: Wmax;    # minimize the maximum weight

subject to MaxWeight {d in DEGREES}:
Wmax >= W[d];
subject to gNotation {d in DEGREES : 2 <= d}:
g[d] <= W[d]-W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
h[d] <= W[i]-W[i-1];
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
2^(-W[3] -p2*g[2] -p3*g[3]) + 2^(-W[3] -p2*W[2] -p3*W[3] -h[3]) <=1;
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
2^(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])
+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :
p2+p3+p4+p5=5}:
2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])
+ 2^(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;

Resource created Monday 08 August 2016, 06:57:47 PM.

file: mis.mod