# Generates an initial segment of the list of prime numbers using Eratosthenes sieve
# without encoding the even numbers greater than 2.
#
# Written by Eric Martin for COMP9021
from math import sqrt
from input_int import input_int
def generate_primes():
print('I will generate all prime numbers in the range [2, N].')
N = input_int()
if N < 2:
return
primes(N)
def primes(N):
# We let primes_sieve encode the sequence (2, 3, 5, 7, 9, 11, ..., N')
# with N' equal to N if N is odd and N - 1 is N is even.
# The index of N' is N_index
N_index = (N - 1) // 2
primes_sieve = [True] * (N_index + 1)
for k in range(1, (round(sqrt(N)) + 1) // 2):
if primes_sieve[k]:
# If k is the index of n then
# 2 * k * (k + 1) is the index of n ** 2;
# Also, we increment the value by 2n,
# which corresponds to increasing the index by 2 * k + 1.
for i in range(2 * k * (k + 1), N_index + 1, 2 * k + 1):
primes_sieve[i] = False
field_width = len(str(N)) + 2
print("{0:{1}d}".format(2, field_width), end = '')
nb_of_fields = 60 // field_width
count = 1
for n in range(1, N_index + 1):
if primes_sieve[n]:
print("{0:{1}d}".format(2 * n + 1, field_width), end = '')
count += 1
if count % nb_of_fields == 0:
print()
if count % nb_of_fields:
print()
if __name__ == '__main__':
generate_primes()
Resource created Wednesday 12 August 2015, 09:54:51 AM.
file: eratosthenes_sieve_v2.py