# Generates an initial segment of the list of prime numbers using Euler sieve
# using the most straighforward approach.
#
# Written by Eric Martin for COMP9021
from math import sqrt
from input_int import input_int
def generate_primes():
print('I will generate all prime numbers in the range [2, N].')
N = input_int()
if N < 2:
return
primes(N)
def primes(N):
primes_sieve = list(range(2, N + 1))
i = 0
while primes_sieve[i] <= round(sqrt(N)):
k = 0
while True:
factor = primes_sieve[i] * primes_sieve[i + k]
if factor > N:
break
while factor <= N:
primes_sieve.remove(factor)
factor *= primes_sieve[i]
k += 1
i += 1
field_width = len(str(N)) + 2
nb_of_fields = 60 // field_width
count = 0
for n in primes_sieve:
print("{0:{1}d}".format(n, field_width), end = '')
count += 1
if count % nb_of_fields == 0:
print()
if count % nb_of_fields:
print()
if __name__ == '__main__':
generate_primes()
Resource created Wednesday 12 August 2015, 09:55:18 AM.
file: euler_sieve_v1.py