COMP2111 Week 4 Term 1, 2019 Predicate Logic I

Summary of topics

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Summary of topics

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Motivation

Predicate logic adds expressiveness to Propositional Logic.

- Examine how/why a proposition is true
- Define relationships between propositions

Motivating example

Consider the statement:

$$
\text { For all } x, y \in X:(y=x+1) \rightarrow(x \leq y)
$$

Motivating example

Consider the statement:

$$
\text { For all } x, y \in X:(y=x+1) \rightarrow(x \leq y)
$$

$X=\{1,2,3\}: 18$ propositional variables:

$$
\begin{aligned}
& P_{11}=" 1=1+1 " \quad S_{11}=" 1 \leq 1 " \\
& P_{12}=" 2=1+1 " \quad S_{12}=" 1 \leq 2 "
\end{aligned}
$$

Final result: $\left(P_{11} \rightarrow S_{11}\right) \wedge\left(P_{12} \rightarrow S_{12}\right) \wedge \cdots \wedge\left(P_{33} \rightarrow S_{33}\right)$

NB

"Normal arithmetic", where P_{11} is false, P_{12} is true, etc is one of many possibilities.

Motivating example

Consider the statement:

$$
\text { For all } x, y \in X:(y=x+1) \rightarrow(x \leq y)
$$

$X=\mathbb{N}: \infty$ propositional variables:

$$
\begin{aligned}
& P_{00}=" 0=0+0 " \quad S_{00}=" 0 \leq 0 " \\
& P_{01}=" 1=0+1 " \quad S_{01}=" 0 \leq 1 "
\end{aligned}
$$

Final result: $\left(P_{00} \rightarrow S_{00}\right) \wedge\left(P_{01} \rightarrow S_{01}\right) \wedge \cdots$

Motivating example

Consider the statement:

$$
\text { For all } x, y \in X:(y=x+1) \rightarrow(x \leq y)
$$

$X=\mathbb{N}: \infty$ propositional variables:

$$
\begin{aligned}
& P_{00}=" 0=0+0 " \quad S_{00}=" 0 \leq 0 " \\
& P_{01}=" 1=0+1 " \quad S_{01}=" 0 \leq 1 "
\end{aligned}
$$

Final result: $\left(P_{00} \rightarrow S_{00}\right) \wedge\left(P_{01} \rightarrow S_{01}\right) \wedge \cdots$ Not permitted!

Motivating example

Consider the statement:

$$
\text { For all } x, y \in X:(y=x+1) \rightarrow(x \leq y)
$$

Predicate logic introduces:

- Predicates

Motivating example

Consider the statement:

$$
\text { For all } x, y \in X:(y=x+1) \rightarrow(x \leq y)
$$

Predicate logic introduces:

- Predicates
- Functions

Motivating example

Consider the statement:

$$
\text { For all } x, y \in X:(y=x+1) \rightarrow(x \leq y)
$$

Predicate logic introduces:

- Predicates
- Functions
- Constants

Motivating example

Consider the statement:

$$
\text { For all } x, y \in X:(y=x+1) \rightarrow(x \leq y)
$$

Predicate logic introduces:

- Predicates
- Functions
- Constants
- Variables, and

Motivating example

Consider the statement:

$$
\text { For all } x, y \in X:(y=x+1) \rightarrow(x \leq y)
$$

Predicate logic introduces:

- Predicates
- Functions
- Constants
- Variables, and
- Quantifiers

Domain of discourse

Fundamental to interpreting formulas is the domain of discourse: the set of "ground objects" that we are referring to.

Domain of discourse

Fundamental to interpreting formulas is the domain of discourse: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain

Domain of discourse

Fundamental to interpreting formulas is the domain of discourse: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain

Domain of discourse

Fundamental to interpreting formulas is the domain of discourse: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)

Domain of discourse

Fundamental to interpreting formulas is the domain of discourse: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

Domain of discourse

Fundamental to interpreting formulas is the domain of discourse: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

Example

Consider: $\forall x C(x)$ where $C(x)$ represents " x studies COMP2111" It is true if the domain of discourse is the set of students in this room.

Domain of discourse

Fundamental to interpreting formulas is the domain of discourse: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

Example

Consider: $\forall x C(x)$ where $C(x)$ represents " x studies COMP2111" It is false if the domain of discourse is the set of students at UNSW.

Multiple domains of discourse

Is it possible to have multiple domains?
For example: the predicate studies (x, y) representing " x (a student) studies y (a subject)".

Multiple domains of discourse

Is it possible to have multiple domains? Yes!
For example: the predicate studies (x, y) representing " x (a student) studies y (a subject)".

- Take Students \cup Subjects as the domain.
- Use unary predicates, e.g. isStudent(x), to restrict the domain.

Multiple domains of discourse

Is it possible to have multiple domains? Yes!
For example: the predicate studies (x, y) representing " x (a student) studies y (a subject)".

- Take Students \cup Subjects as the domain.
- Use unary predicates, e.g. isStudent(x), to restrict the domain.
- To restrict quantifiers (applies to any subset of the domain defined by a unary predicate):
- $\exists x \in \operatorname{StudEnTS}: \varphi$ is equivalent to: $\exists x($ isStudent $(x) \wedge \varphi)$
- $\forall x \in \operatorname{StudENTS}: \varphi$ is equivalent to: $\forall x($ isStudent $(x) \rightarrow \varphi)$

Domain of discourse

Function outputs, constants, and variables are interpreted as elements of the domain.

Predicates are truth-functional: they map elements of the domain to true or false.

Quantifiers (and the Boolean connectives) are predicate operators: they transform predicates into other predicates.

Example

Consider the following predicates and constants:

```
K(x,y): x knows y
S(x,y): x is not the son of y
    J: Jon Snow
N: Ned Stark
B: Bran Stark
```

Domain of discourse: People
The following are OK:

- $S(B, J)$: Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg \mathrm{~K}(\mathrm{~J}, x)$: Jon Snow knows nothing.

Example

Consider the following predicates and constants:

```
K(x,y): x knows y
S(x,y): x is not the son of y
    J: Jon Snow
N: Ned Stark
B: Bran Stark
```

Domain of discourse: People
The following are OK:

- $S(B, J)$: Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg \mathrm{~K}(\mathrm{~J}, x)$: Jon Snow knows no-one.

Example

Consider the following predicates and constants:

```
K(x,y): x knows y
S(x,y): x is not the son of y
    J: Jon Snow
N: Ned Stark
B: Bran Stark
```

Domain of discourse: People
The following are OK:

- $S(B, J)$: Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg \mathrm{~K}(\mathrm{~J}, x)$: Jon Snow knows no-one.

This is not:

- $K(B, S(J, N))$: Bran knows that Jon is not the son of Ned

Example

Consider the following predicates and constants:

```
K(x,y): x knows y
S(x,y): x is not the son of y
F(x,y): the fact that x is not the son of y (functional)
    J: Jon Snow
N: Ned Stark
B: Bran Stark
```

Domain of discourse: People UFACTS
The following are OK:

- $S(B, J)$: Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg \mathrm{~K}(\mathrm{~J}, x)$: Jon Snow knows no-one.

This is OK:

- $K(B, F(J, N))$: Bran knows that Jon is not the son of Ned

Example

Consider the following predicates and constants:

```
K(x,y): x knows y
S(x,y): x is not the son of y
F(x,y): the fact that x is not the son of y (functional)
    J: Jon Snow
N: Ned Stark
B: Bran Stark
```

Domain of discourse: People UFACTS
The following are OK:

- $S(B, J)$: Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg \mathrm{~K}(\mathrm{~J}, x)$: Jon Snow knows nothing.

This is OK:

- $K(B, F(J, N))$: Bran knows that Jon is not the son of Ned

Summary of topics

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Vocabulary

A vocabulary indicates what predicates, functions and constants we can use to build up our formulas. Very similar to C header files, or Java interfaces.

A vocabulary V is a set of:

- Predicate "symbols" P, Q, ..., each with an assoicated arity (number of arguments)
- Function "symbols" f, g, each with an assoicated arity (number of arguments)
- Constant "symbols" c, d, ... (also known as 0-arity functions)

Vocabulary

A vocabulary indicates what predicates, functions and constants we can use to build up our formulas. Very similar to C header files, or Java interfaces.

A vocabulary V is a set of:

- Predicate "symbols" P, Q, ..., each with an assoicated arity (number of arguments)
- Function "symbols" f, g, each with an assoicated arity (number of arguments)
- Constant "symbols" c, d, ... (also known as 0-arity functions)

Example

$V=\{\leq,+, 1\}$ where \leq is a binary predicate symbol, + is a binary function symbol, and 1 is a constant symbol.

Terms

A term is defined recursively as follows:

- A variable is a term
- A constant symbol is a term
- If f is a function symbol with arity k, and t_{1}, \ldots, t_{k} are terms, then $f\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ is a term.

NB

Terms will be interpreted as elements of the domain of discourse.

Formulas

A formula of Predicate Logic is defined recursively as follows:

- If P is a predicate symbol with arity k, and t_{1}, \ldots, t_{k} are terms, then $P\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ is a formula
- If t_{1} and t_{2} are terms then $\left(t_{1}=t_{2}\right)$ is a formula
- If φ, ψ are a formulas then the following are formulas:
- $\neg \varphi$
- $(\varphi \wedge \psi)$
- $(\varphi \vee \psi)$
- $(\varphi \rightarrow \psi)$
- $(\varphi \leftrightarrow \psi)$
- $\forall x \varphi$
- $\exists x \varphi$

NB

The base cases are known as atomic formulas: they play a similar role in the parse tree as propositional variables.

Parse trees

Example

$$
\forall x \forall y((y=x+1) \rightarrow(x \leq y))
$$

Free and Bound variables

A variable is bound to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is free.

Free and Bound variables

A variable is bound to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is free.

Example

In $(\forall x \exists z \exists x P(x, y, z)) \wedge Q(x)$:

Free and Bound variables

A variable is bound to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is free.

Example

In $(\forall x \exists z \exists x P(x, y, z)) \wedge Q(x)$:

- z is bound to $\exists z$

Free and Bound variables

A variable is bound to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is free.

Example

In $(\forall x \exists z \exists x P(x, y, z)) \wedge Q(x)$:

- z is bound to $\exists z$
- y is free

Free and Bound variables

A variable is bound to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is free.

Example

In $(\forall x \exists z \exists x P(x, y, z)) \wedge Q(x)$:

- z is bound to $\exists z$
- y is free
- First x is bound to $\exists x$

Free and Bound variables

A variable is bound to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is free.

Example

In $(\forall x \exists z \exists x P(x, y, z)) \wedge Q(x)$:

- z is bound to $\exists z$
- y is free
- First x is bound to $\exists x$
- Second x is free

Free and Bound variables

A variable is bound to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is free.

Example

In $(\forall x \exists z \exists x P(x, y, z)) \wedge Q(x)$:

- z is bound to $\exists z$
- y is free
- First x is bound to $\exists x$
- Second x is free

A formula with no free variables is a sentence.

Free variables formally

We can define the set of free variables recursively on the structure of a formula:

- $F V(x)=\{x\}$ for all variables x
- $F V(c)=\emptyset$ for all constants c
- $F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=F V\left(t_{1}\right) \cup \cdots \cup F V\left(t_{k}\right)$ for all k-ary functions f

Free variables formally

We can define the set of free variables recursively on the structure of a formula:

- $F V(x)=\{x\}$ for all variables x
- $F V(c)=\emptyset$ for all constants c
- $F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=F V\left(t_{1}\right) \cup \cdots \cup F V\left(t_{k}\right)$ for all k-ary functions f
- $F V\left(P\left(t_{1}, \ldots, t_{k}\right)\right)=F V\left(t_{1}\right) \cup \cdots \cup F V\left(t_{k}\right)$ for all k-ary predicates P
- $F V\left(t_{1}=t_{2}\right)=F V\left(t_{1}\right) \cup F V\left(t_{2}\right)$

Free variables formally

We can define the set of free variables recursively on the structure of a formula:

- $F V(x)=\{x\}$ for all variables x
- $F V(c)=\emptyset$ for all constants c
- $F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=F V\left(t_{1}\right) \cup \cdots \cup F V\left(t_{k}\right)$ for all k-ary functions f
- $F V\left(P\left(t_{1}, \ldots, t_{k}\right)\right)=F V\left(t_{1}\right) \cup \cdots \cup F V\left(t_{k}\right)$ for all k-ary predicates P
- $F V\left(t_{1}=t_{2}\right)=F V\left(t_{1}\right) \cup F V\left(t_{2}\right)$
- $F V(\neg \varphi)=F V(\varphi)$
- $F V(\psi \wedge \varphi)=F V(\psi \vee \varphi)=F V(\psi \rightarrow \varphi)=F V(\psi \leftrightarrow \varphi)=$ $F V(\psi) \cup F V(\varphi)$

Free variables formally

We can define the set of free variables recursively on the structure of a formula:

- $F V(x)=\{x\}$ for all variables x
- $F V(c)=\emptyset$ for all constants c
- $F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=F V\left(t_{1}\right) \cup \cdots \cup F V\left(t_{k}\right)$ for all k-ary functions f
- $F V\left(P\left(t_{1}, \ldots, t_{k}\right)\right)=F V\left(t_{1}\right) \cup \cdots \cup F V\left(t_{k}\right)$ for all k-ary predicates P
- $F V\left(t_{1}=t_{2}\right)=F V\left(t_{1}\right) \cup F V\left(t_{2}\right)$
- $F V(\neg \varphi)=F V(\varphi)$
- $F V(\psi \wedge \varphi)=F V(\psi \vee \varphi)=F V(\psi \rightarrow \varphi)=F V(\psi \leftrightarrow \varphi)=$ $F V(\psi) \cup F V(\varphi)$
- $F V(\forall x \varphi)=F V(\exists x \varphi)=F V(\varphi) \backslash\{x\}$

Substitution

If t is a term, φ a formula, and $x \in F V(\varphi)$, then the substitution of t for x in φ (denoted $\varphi[t / x]$) is the formula obtained by replacing every free occurrence of x with t.

Substitution

If t is a term, φ a formula, and $x \in F V(\varphi)$, then the substitution of t for x in φ (denoted $\varphi[t / x]$) is the formula obtained by replacing every free occurrence of x with t.

It can be useful to have "access" to the free variables of a formula. So if x_{1}, \ldots, x_{k} are the free variables of φ, we may denote this as $\varphi\left(x_{1}, \ldots, x_{k}\right)$. Substitution can be easily presented: $\varphi(t)$ for $\varphi(x)[t / x]$.

Note

Variable names matter: $\varphi(x)$ and $\varphi(y)$ are different formulas!

Summary of topics

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Models

Predicate formulas are interpreted in Models.
Given a vocabulary V a model \mathcal{M} defines:

- A (non-empty) domain $D=\operatorname{Dom}(\mathcal{M})$
- For every predicate symbol $P \in V$ with arity k : a k-ary relation $P^{\mathcal{M}}$ on D
- For every function symbol $f \in V$ with arity k : a function $f \mathcal{M}: D^{k} \rightarrow D$
- For every constant symbol $c \in V$: an element, $c^{\mathcal{M}}$ of D

Models

Predicate formulas are interpreted in Models.
Given a vocabulary V a model \mathcal{M} defines:

- A (non-empty) domain $D=\operatorname{Dom}(\mathcal{M})$
- For every predicate symbol $P \in V$ with arity k : a k-ary relation $P^{\mathcal{M}}$ on D
- For every function symbol $f \in V$ with arity k : a function $f \mathcal{M}: D^{k} \rightarrow D$
- For every constant symbol $c \in V$: an element, $c^{\mathcal{M}}$ of D

Example

For the vocabulary $V=\{\leq,+, 1\}$: one model could be \mathbb{N} with the standard definitions.

Environments

Given a model \mathcal{M}, an environment (or lookup table), η, is a function from the set of variables to $\operatorname{Dom}(\mathcal{M})$.

Environments

Given a model \mathcal{M}, an environment (or lookup table), η, is a function from the set of variables to $\operatorname{Dom}(\mathcal{M})$.

Given an environment η, we denote by $\eta[x \mapsto c]$ the environment that agrees with η everywhere except possibly at x (where it has value c).

Interpretations

An interpretation is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

Interpretations

An interpretation is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps terms to elements of $\operatorname{Dom}(\mathcal{M})$ recursively as follows:

- $\llbracket x \rrbracket_{\mathcal{M}}^{\eta}=\eta(x)$
- $\llbracket c \rrbracket_{\mathcal{M}}^{\eta}=c^{\mathcal{M}}$
- $\llbracket f\left(t_{1}, \ldots, t_{k}\right) \rrbracket_{\mathcal{M}}^{\eta}=f^{\mathcal{M}}\left(\llbracket t_{1} \rrbracket_{\mathcal{M}}^{\eta}, \ldots, \llbracket t_{k} \rrbracket_{\mathcal{M}}^{\eta}\right)$

Interpretations

An interpretation is a pair (\mathcal{M}, η) where \mathcal{M} is a model and η is an environment.

An interpretation (\mathcal{M}, η) maps formulas to \mathbb{B} recursively as follows:

- $\llbracket P\left(t_{1}, \ldots, t_{k}\right) \rrbracket_{\mathcal{M}}^{\eta}=$ true if $P^{\mathcal{M}}\left(\llbracket t_{1} \rrbracket_{\mathcal{M}}^{\eta}, \ldots, \llbracket t_{k} \rrbracket_{\mathcal{M}}^{\eta}\right)$ holds.
- $\llbracket t_{1}=t_{2} \rrbracket_{\mathcal{M}}^{\eta}=$ true if $\llbracket t_{1} \rrbracket_{\mathcal{M}}^{\eta}=\llbracket t_{2} \rrbracket_{\mathcal{M}}^{\eta}$
- $\llbracket \forall x \varphi \rrbracket_{\mathcal{M}}^{\eta}=$ true if $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta[x \mapsto c]}=$ true for all $c \in \operatorname{Dom}(\mathcal{M})$
- $\llbracket \exists x \varphi \rrbracket_{\mathcal{M}}^{\eta}=$ true if $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta[x \mapsto c]}=$ true for some $c \in \operatorname{Dom}(\mathcal{M})$
- $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta}$ defined in the same way as Propositional Logic for all other formulas φ.

Example

$$
\forall x \forall y((y=x+1) \rightarrow(x \leq y))
$$

- $\langle\mathbb{N}, \leq,+, 1\rangle$:

Example

$$
\forall x \forall y((y=x+1) \rightarrow(x \leq y))
$$

- $\langle\mathbb{N}, \leq,+, 1\rangle$: true

Example

$$
\forall x \forall y((y=x+1) \rightarrow(x \leq y))
$$

- $\langle\mathbb{N}, \leq,+, 1\rangle$: true
- $\langle\mathbb{N},>,+, 1\rangle$:

Example

$$
\forall x \forall y((y=x+1) \rightarrow(x \leq y))
$$

- $\langle\mathbb{N}, \leq,+, 1\rangle$: true
- $\langle\mathbb{N}\rangle,+, 1$,$\rangle : false$

Example

$$
\forall x \forall y((y=x+1) \rightarrow(x \leq y))
$$

- $\langle\mathbb{N}, \leq,+, 1\rangle$: true
- $\langle\mathbb{N},>,+, 1\rangle$: false
- $\langle\{0\},\{(0,0)\},+, 0\rangle$:

Example

$$
\forall x \forall y((y=x+1) \rightarrow(x \leq y))
$$

- $\langle\mathbb{N}, \leq,+, 1\rangle$: true
- $\langle\mathbb{N},>,+, 1\rangle$: false
- $\langle\{0\},\{(0,0)\},+, 0\rangle$: true

