COMP2111 Week 8 Term 1, 2019 Week 7 recap

Week 7 recap: State machines/Transition systems

Abstractions of step-by-step processes

- Definitions:
- States and Transitions
- (Non-)determinism
- Reachability
- Safety and Liveness
- The Invariant Principle
- Termination
- Finite automata:
- DFAs, NFAs
- Regular languages

Definitions

A transition system is a pair (S, \rightarrow) where:

- S is a set (of states), and
- $\rightarrow \subseteq S \times S$ is a (transition) relation.
- S may have a designated start state, $s_{0} \in S$
- S may have designated final states, $F \subseteq S$
- The transitions may be labelled by elements of a set Λ :
- $\rightarrow \subseteq S \times \wedge \times S$
- $\left(s, a, s^{\prime}\right) \in \rightarrow$ is written as $s \xrightarrow{a} s^{\prime}$
- If \rightarrow is a function we say the system is deterministic, in general it is non-deterministic

Runs and reachability

Given a transition system (S, \rightarrow) and states $s, s^{\prime} \in S$,

- a run from s is a (possibly infinite) sequence s_{1}, s_{2}, \ldots such that $s=s_{1}$ and $s_{i} \rightarrow s_{i+1}$ for all $i \geq 1$.
- we say s^{\prime} is reachable from s, written $s \rightarrow^{*} s^{\prime}$, if $\left(s, s^{\prime}\right)$ is in the transitive closure of \rightarrow.

Safety and Liveness

Common problem (Safety)

Will every run of a transition system avoid a particular state or states? Equivalently, will some run of a transition system reach a particular state or states?

Common problem (Liveness)

Will every run of a transition system reach a particular state or states? Equivalently, will some run of a transition system avoid a particular state or states?

The Invariant Principle (safety)

A preserved invariant of a transition system is a unary predicate φ on states such that if $\varphi(s)$ holds and $s \rightarrow s^{\prime}$ then $\varphi\left(s^{\prime}\right)$ holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all states reachable from s.

Example

Example

- States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
- $(x, y, r) \rightarrow\left(x^{2}, \frac{y}{2}, r\right)$ if y is even
- $(x, y, r) \rightarrow\left(x^{2}, \frac{y-1}{2}, r x\right)$ if y is odd

Example

Example

- States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
- $(x, y, r) \rightarrow\left(x^{2}, \frac{y}{2}, r\right)$ if y is even
- $(x, y, r) \rightarrow\left(x^{2}, \frac{y-1}{2}, r x\right)$ if y is odd
- Preserved invariant: $r x^{y}$ is a constant

Example

Example

- States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
- $(x, y, r) \rightarrow\left(x^{2}, \frac{y}{2}, r\right)$ if y is even
- $(x, y, r) \rightarrow\left(x^{2}, \frac{y-1}{2}, r x\right)$ if y is odd
- Preserved invariant: $r x^{y}$ is a constant
- \Rightarrow All states reachable from $(m, n, 1)$ will satisfy $r x^{y}=m^{n}$

Example

Example

- States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
- $(x, y, r) \rightarrow\left(x^{2}, \frac{y}{2}, r\right)$ if y is even
- $(x, y, r) \rightarrow\left(x^{2}, \frac{y-1}{2}, r x\right)$ if y is odd
- Preserved invariant: $r x^{y}$ is a constant
- \Rightarrow All states reachable from $(m, n, 1)$ will satisfy $r x^{y}=m^{n}$
- \Rightarrow if $(x, 0, r)$ is reachable from $(m, n, 1)$ then $r=m^{n}$.

Termination (liveness)

A transition system (S, \rightarrow) terminates from a state s if there is an N such that all runs from s have length at most N.

A derived variable is a function $f: S \rightarrow \mathbb{R}$.
A derived variable is strictly decreasing if $s \rightarrow s^{\prime}$ implies $f(s)>f\left(s^{\prime}\right)$.

Theorem

If f is an \mathbb{N}-valued, strictly decreasing derived variable, then the length of any run from s is at most $f(s)$.

Deterministic Finite Automata

A deterministic finite automaton (DFA) is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states
- Σ is the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

Language of a DFA

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*} Informally: A word defines a run in the DFA and the word is accepted if the run ends in a final state.

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

Language of a DFA

w: 1001

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

Language of a DFA

$w: 1001$

A DFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}

- Start in state q_{0}
- Take the first symbol of w
- Repeat the following until there are no symbols left:
- Based on the current state and current input symbol, transition to the appropriate state determined by δ
- Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

Language of a DFA

$$
L(\mathcal{A})=\{1,01,11,101, \ldots\}
$$

A DFA accepts a sequence of symbols from Σ-i.e. elements of Σ^{*}

For a DFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the language of $\mathcal{A}, L(\mathcal{A})$, is the set of words from Σ^{*} which are accepted by \mathcal{A}

A language $L \subseteq \Sigma^{*}$ is regular if there is some DFA \mathcal{A} such that $L=L(\mathcal{A})$

Example

Example

\mathcal{A} such that $L(\mathcal{A})=\left\{w \in\{a, b\}^{*}:\right.$ every odd symbol is $\left.b\right\}$ \mathcal{A}

Non-deterministic Finite Automata

A non-deterministic finite automaton (NFA) is a nondeterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA

Non-deterministic Finite Automata

Formally, a non-deterministic finite automaton (NFA) is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states
- Σ is the input alphabet
- $\delta \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times Q$ is the transition relation
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

Language of an NFA

An NFA accepts a sequence of symbols from Σ - i.e. elements of Σ^{*}
Informally: A word defines several runs in the NFA and the word is accepted if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don't count)
Note 2: An NFA will always "choose wisely"

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

$w: 1000$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

$w: 1000 \checkmark$

- Start in state q_{0}
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

Language of an NFA

$$
L(\mathcal{A})=\{1,01,11,10, \ldots\}
$$

For an NFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the language of $\mathcal{A}, L(\mathcal{A})$, is the set of words from Σ^{*} which are accepted by \mathcal{A}

